Sherwood Engineering HF Test Results

Model IC-7300	Serial # 02001408	Test Date:	04/05/2016
Model IC-7300	Serial # 02012272	Test Date:	02/10/2018

Data is for sample #1 unless otherwise noted.

IF BW 2400 –6 / -60, Hz 2344 / 3469	Ultimate	>100	dB*
IF BW 500 –6 /-60, Hz 515 / 666	Ultimate	>100	dB*

* Previous value of 85 dB was in error. Both samples measure >100 dB. See Notes section for additional comments on ultimate rejection.

Front End Selectivity (A – F)	15 bandpass filters		С	
Dynamic Range with radio, no preamp, IP+ OFF	Sample #2	Sample	#1	
Dynamic Range 20 kHz	84		81	dB
Dynamic Range 10 kHz	84		81	dB
Dynamic Range 5 kHz	84		81	dB
Dynamic Range 2 kHz	84		81	dB
Dynamic Range of radio with IP+ dynamic-range	enhancement e	enabled		
Dynamic Range 20 kHz	106		103	dB
Dynamic Range 10 kHz	100		101	dB
Dynamic Range 5 kHz	97		95	dB
Dynamic Range 2 kHz	97		94	dB
Blocking above noise floor, 1uV signal @ 100 kHz	z, AGC On,		123	dB
See notes below on blocking, limited by ADC clip	point.			
Phase noise (normalized) at 2.5 kHz spacing:			-127	dBc
Phase noise (normalized) at 5 kHz spacing:			-132	dBc
Phase noise (normalized) at 10 kHz spacing:			-137	dBc
Phase noise (normalized) at 20 kHz spacing:			-140	dBc
Phase noise (normalized) at 30 kHz spacing:			-144	dBc
Phase noise (normalized) at 40 kHz spacing:			-145	dBc
Phase noise (normalized) at 50 kHz spacing:			-147	dBc
Phase noise (normalized) at 80 kHz spacing:			-144	dBc
Phase noise (normalized) at 100 kHz spacing:			-140	dBc
Phase noise (normalized) at 200 kHz spacing:			-149	dBc
Phase noise (normalized) at 300 kHz spacing:			-149	dBc
Phase noise (normalized) at 400 kHz spacing:			-149	dBc
Phase noise (normalized) at 500 kHz spacing:			-149	dBc

		Sampl	e #2	Sample	e #1
Noise floor, 2400 Hz, 14 MHz, no preamp, II	P+ On	_	-126	-116	dBm
Noise floor, 2400 Hz, 14 MHz, no preamp			-127	-128	dBm
Noise floor, 2400 Hz, 14 MHz, Preamp 1 On	L		-135.5	-136	dBm
Noise floor, 2400 Hz, 14 MHz, Preamp 2 On	l		-136.5	-137	dBm
-		Sample	e #2	Sample	e #1
Sensitivity SSB at 14 Mhz, no preamp, IP+ C	Dn	-	0.35	1.0	uV
Sensitivity SSB at 14 MHz, no preamp			0.30	0.27	uV
Sensitivity SSB at 14 MHz, Preamp 1 On			0.12	0.11	uV
Sensitivity SSB at 14 MHz, Preamp 2 On			0.11	0.10	uV
Noise floor, 500 Hz, 14.2 MHz, IP+ On*			-132	-122	dB,
Noise floor, 500 Hz, 14.2 MHz, no preamp			-133	-133	dBm
Noise floor, 500 Hz, 14.2 MHz, Preamp 1 Or	1		-140.5	-141	dBm
Noise floor, 500 Hz, 14.2 MHz, Preamp 2 Or	1		-141.5	-142	dBm
*SSB or CW Noise floor with IP+ On, and e	ither pr	eamp O	n, is only degr	aded 0.5	5 dB.
Noise floor, SSB, 50.125 MHz, no preamp				-125	dBm
Noise floor, SSB, 50.125 MHz, Preamp 1				-134	dBm
Noise floor, SSB, 50.125 MHz, Preamp 2				-135	dBm
Sensitivity, SSB, 50.125 MHz, no preamp				0.37	uV
Sensitivity, SSB, 50.125 MHz, Preamp 1				0.13	uV
Sensitivity, SSB, 50.125 MHz, Preamp 2				0.113	uV
Noise floor 500 Hz 50 125 MHz no pream	h			-131	dBm
Noise floor, 500 Hz, 50 125 MHz, no preamp 1	On			-139	dBm
Noise floor, 500 Hz, 50.125 MHz, Preamp 2	On			-140	dBm
Signal for SQ, no preamp	73	dBm		50	uV
Signal for S9, no preamp 1	-73	dBm		30 22	u v uV
Signal for S9, Preamp 2	-80 -85	dBm		12	uv uV
2.5		<i>a</i>			
Gain of preamp(s)				7	dD
Preamp 7				/ 11	ив dR
r reamp 2				11	uD
AGC threshold at 3 dB, no preamp				1.9	uV
AGC threshold at 3 dB, Preamp 1 On				0.85	uV
AGC threshold at 3 dB, Preamp 2 On				0.5	uV

Notes on following page.

My first IC-7300 was obtained in April of 2016 and has an early serial number 02001408. Icom usually starts US and Canada S/N at 02001001. The two main issues with the 7300 were a poor implementation of "dither" (called IP+), and an "RF Tail" on key-up after the linear key line had gone high. This can cause hot switching of the amplifier, particularly with QSK on CW.

While "dither" should only degrade receiver noise floor a few dB, the 7300 measured degradation in the range of 9 to 13 dB. While this may be of little significance on the lower HF bands due to the higher level of band noise, an approximate 10 dB increase in noise floor with IP+ is certainly undesirable on 6, 10, 12 and possibly 15 meters.

A second sample 7300 was obtained in early February 2018 with S/N 02012272. There is no longer a significant degradation in noise floor with present production 7300s. When the production change was made is not known at this time. Over 20,000 IC-7300s have been sold to amateurs worldwide in fewer than two years. Over 40,000 IC-7300s have been sold as of second quarter 2020.

While I have not found the need to run IP+ on my early 7300 on any band, the significant improvement of that feature is a welcome enhancement. Degradation in noise floor with IP+ is now approximately 1 dB. There is likely some sample variation, and another ham measured a unit with S/N of 02010125 with a 2.5 dB degradation due to IP+.

My original filter ultimate rejection measurement appears to have been incorrect. Both 7300s were measured again, and both measure over 100 dB. When these updated measurements were in progress, I noted a difference in what I would call a "clock" ticking sound between the two units. With a signal injected 110 dB above the receiver noise floor, the ticking sound is much faster by an order of magnitude on the second sample than on the first sample. At 1 kHz offset with a 500-Hz CW bandwidth, the "clock" sound is obvious, but at 2 kHz offset, it is just noticeable. I must emphasize this is with a clean test signal 110 dB above CW receiver noise floor.

To load my settings from sample #1 into sample #2, I had to update firmware from 1.14 to 1.20. The only difference was the main CPU version number.

Blocking measurement was limited by the ADC overload indicator "OVF". Overload with a single signal occurs at -10 dBm. While dynamic range is increased significantly with IP+ enabled, the overload point remains at -10 dBm.

S meter linearity S1 - S5: 2.8 dB / S unit S5 - S9: 3.3 dB / S unit From S9 to S9+60, each 10 dB reading was actually +9.5 dB

Two-sample Rev E